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1 Correlation functions

1.1 Definition and basic properties

• for a Hamiltonian H, time variable t, and two operators A and B, the

correlation function 〈A(t)B〉 is defined as

〈A(t)B〉 = Z−1 Tr {exp(−βH)A(t)B} , (1)

where

Z = Tr {exp(−βH)}

is the partition function, β = 1/(kBT ) and (with h̄ = 1)

A(t) = exp(iHt)A exp(−iHt)

is the time dependent operator A in the Heisenberg representation

• in the basis of eigenvectors |m〉 of the Hamiltonian H with eigenvalues Em

and with matrix elements denoted as 〈m|A|n〉 = Amn and 〈m|B|n〉 = Bmn,

an explicit expression for the correlation function is

〈A(t)B〉 = Z−1
∑

mn

AmnBnm exp(−iEnt) exp(−βEm) exp(iEmt) . (2)

Similar expressions hold for a related correlation function 〈BA(t)〉:

〈BA(t)〉 = Z−1 Tr {exp(−βH)BA(t)}

= Z−1
∑

mn

AmnBnm exp(iEmt) exp(−βEn) exp(−iEnt) . (3)
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• the Fourier transformations between the time (t) and frequency (ω) vari-

ables are defined as

f̃(ω) =
∫

∞

−∞

exp(iωt)f(t)dt , f(t) =
1

2π

∫
∞

−∞

exp(−iωt)f̃(ω)dω (4)

• using the well-known representation of the Dirac δ-function, namely
∫

∞

−∞

exp(iωt)dt = 2π δ(ω) ,

the Fourier transforms of the correlation functions 〈A(t)B〉 and 〈BA(t)〉 are

equal to

〈A(.)B〉(ω) ≡
∫

∞

−∞

exp(iωt)〈A(t)B〉dt

= 2πZ−1
∑

mn

AmnBnm exp(−βEm) δ(ω + Em − En) ,

〈BA(.)〉(ω) ≡
∫

∞

−∞

exp(iωt)〈BA(t)〉dt

= 2πZ−1
∑

mn

AmnBnm exp(−βEn) δ(ω + Em − En) . (5)

By employing an identity

exp(−βEn) δ(ω + Em − En) = exp(−βω) exp(−βEm) δ(ω + Em − En) ,

one can prove a general relation between the Fourier transforms in Eq. (5):

〈BA(.)〉(ω) = exp(−βω) 〈A(.)B〉(ω) . (6)

Inverse relations to Eq. (5) are:

〈A(t)B〉 =
1

2π

∫
∞

−∞

exp(−iωt) 〈A(.)B〉(ω) dω ,

〈BA(t)〉 =
1

2π

∫
∞

−∞

exp(−iωt) 〈A(.)B〉(ω) exp(−βω) dω . (7)

• Example: for a linear harmonic oscillator with frequency Ω, the Hamilto-

nian is

H = Ω
(

a+a +
1

2

)

, (8)

where a+ and a are creation and annihilation operators, and we get directly

from Eq. (5) (and from the known spectrum of the Hamiltonian H):

〈a+(.)a〉(ω) = 2π
1

exp(βΩ) − 1
δ(ω + Ω) ,

〈a(.)a+〉(ω) = 2π

[

1 +
1

exp(βΩ) − 1

]

δ(ω − Ω) . (9)
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Note that the oscillator frequency Ω (≡ system dynamics) is contained in

the shifts of arguments of the two δ-functions while the two weights contain

the Bose-Einstein occupation function [exp(βΩ) − 1]−1 (≡ statistics). The

application of Eq. (7) for t = 0 leads to the well-known thermodynamic

average

〈a+a〉 =
1

exp(βΩ) − 1
. (10)

1.2 Method of equations of motion

• time evolution of the operator A(t)

d

dt
A(t) = −i[A(t), H]

leads to the equation of motion for the correlation function

d

dt
〈A(t)B〉 = −i〈[A(t), H]B〉 (11)

• the equation of motion is usually applied to a set of correlation functions;

the higher correlation functions appearing on the r.h.s. of Eq. (11) have to

be approximated by means of the original correlation functions in order to

get a closed set of equations

• the time derivative in Eq. (11) can be removed by employing the frequency-

dependent quantities 〈A(.)B〉(ω) and a trivial consequence of the Fourier

transformation, Eq. (4), for the functions f(t) and f̃(ω):

−iωf̃(ω) =
∫

∞

−∞

exp(iωt)
df(t)

dt
dt .

This leads to:

ω 〈A(.)B〉(ω) = 〈[A(.), H]B〉(ω) . (12)

• Application: for the linear harmonic oscillator, Eq. (8), the usual commu-

tation rules

[a, a+] = 1 =⇒ [a+, H] = −Ωa+ (13)

yield for the correlation function 〈a+(.)a〉(ω) a simple result [see Eq. (9)]:

(ω + Ω) 〈a+(.)a〉(ω) = 0 =⇒ 〈a+(.)a〉(ω) = 2π w δ(ω + Ω) ,
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where w is an unknown weight. Substitution of this result in Eq. (7) for t = 0

gives averages

〈a+a〉 = w , 〈aa+〉 = w exp(βΩ) .

This can be combined with the thermodynamic average of Eq. (13),

〈aa+〉 − 〈a+a〉 = 1 =⇒ w [exp(βΩ) − 1] = 1 ,

which defines the weight w in agreement with the previous result, Eq. (9).

Note that this derivation of the correlation function, Eq. (9), and its conse-

quence, Eq. (10), required neither any knowledge of the spectrum nor evalu-

ation of the infinite summations contained, e.g., in Eq. (5).

2 Heisenberg Hamiltonian for spins S = 1/2

2.1 Properties of spin operators

• the Hamiltonian is defined as

H = − 1

2

∑

mn

Jmn sm · sn −
∑

m

bmsz
m , (14)

where indices m, n denote lattice sites, the sm ≡ (sx
m, sy

m, sz
m) are spin op-

erators (with spin quantum number S = 1/2) at the m-th lattice site, the

exchange integrals Jmn describe a pair interaction of the local spins (Jmm = 0,

Jmn = Jnm), and the quantities bm denote local magnetic fields pointing along

z-direction

• the spin operators sm can be realized using the 2 × 2 Pauli matrices:

sx
m =

1

2
σx

m =
1

2




0 1

1 0





m

,

sy
m =

1

2
σy

m =
1

2




0 −i

i 0





m

,

sz
m =

1

2
σz

m =
1

2




1 0

0 −1





m

, (15)

and the related operators s±m by matrices:

s+
m ≡ sx

m + isy
m =




0 1

0 0





m

,
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s−m ≡ sx
m − isy

m =




0 0

1 0





m

(16)

• these operators satisfy following commutation rules:

[sx
m, sy

n] = iδmn sz
m , [s−m, sz

n] = δmn s−m ,

[sy
m, sz

n] = iδmn sx
m , [s−m, sx

n] = −δmn sz
m ,

[sz
m, sx

n] = iδmn sy
m , [s−m, sy

n] = iδmn sz
m (17)

2.2 Correlation functions of spin operators

• time evolution of the spin operator s−j due to the Hamiltonian H, Eq. (14),

follows from Eq. (17)

d

dt
s−j = −i[s−j , H] = ibjs

−

j + i
∑

n

Jjn (−sz
js

x
n + isz

js
y
n + s−j sz

n)

= ibjs
−

j + i
∑

n

Jjn (sz
ns

−

j − sz
js

−

n )

• exact equations of motion for correlation functions
〈

s−j (t)s+
r

〉

are

d

dt

〈

s−j (t)s+
r

〉

= ibj

〈

s−j (t)s+
r

〉

+ i
∑

n

Jjn

{〈

sz
n(t)s−j (t)s+

r

〉

−
〈

sz
j(t)s

−

n (t)s+
r

〉}

(18)

• approximate reduction of the higher correlation functions is obtained by a

decoupling (for n 6= j):
〈

sz
n(t)s−j (t)s+

r

〉

≈ sz
n

〈

s−j (t)s+
r

〉

, (19)

where sz
n = 〈sz

n〉 is the thermodynamic average; the equations of motion,

Eq. (18), together with Eq. (19) represent an infinite but closed set of equa-

tions. The decoupling, Eq. (19), is called a random-phase approximation

(RPA), see, e.g., S. V. Tyablikov: Methods of Quantum Theory of Mag-

netism (Nauka, 1975). This approximation is exact for ferromagnets at zero

temperature.

2.3 Solution for a ferromagnet

• in the case of a ferromagnet on a Bravais lattice, all lattice sites are equiv-

alent,

bm = b , sz
m = sz ,
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and Eq. (18) is thus approximated by

d

dt

〈

s−j (t)s+
r

〉

= ib
〈

s−j (t)s+
r

〉

+ i sz
∑

n

Jjn

{〈

s−j (t)s+
r

〉

−
〈

s−n (t)s+
r

〉}

• with an abbreviation

J =
∑

n

Jmn > 0 ,

the final equations of motion are given by

d

dt

〈

s−j (t)s+
r

〉

= i (b + J sz )
〈

s−j (t)s+
r

〉

− i sz
∑

n

Jjn

〈

s−n (t)s+
r

〉

(20)

• transformation of Eq. (20) to the frequency variable ω is based on a defi-

nition [see Eq. (5)]:

Mjr(ω) =
〈

s−j (.)s+
r

〉

(ω) . (21)

The resulting equations for Mjr(ω) are [see Eq. (12)]:

−ωMjr(ω) = (b + J sz )Mjr(ω) − sz
∑

n

JjnMnr(ω) . (22)

• since the ferromagnet is translationally invariant, Eq. (22) can be simplified

by introducing the lattice Fourier transformation:

J̃(k) =
∑

n

exp(ik · Tn) Jn0 ,

M̃(k, ω) =
∑

n

exp(ik · Tn)Mn0(ω) , (23)

where k is a vector from the 1st Brillouin zone (BZ) of the lattice and Tn

denotes the n-th translational vector (the vector of the n-th lattice site).

This yields:

−ωM̃(k, ω) = (b + J sz )M̃(k, ω) − sz J̃(k)M̃(k, ω) . (24)

• the last equation, Eq. (24), can be rewritten as

[ω + E(k)]M̃(k, ω) = 0 , (25)

where

E(k) = b + sz
[

J − J̃(k)
]

(26)

denotes an excitation energy of the system—the magnon energy. The solution

of Eq. (25) is given by

M̃(k, ω) = 2π w(k) δ
(

ω + E(k)
)

, (27)
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where w(k) denotes an unknown weight. A comparison of Eq. (27) with the

result for the linear harmonic oscillator, Eq. (9), and the lattice Fourier trans-

formation, Eq. (23), suggest that the creation operator of the excitation—the

magnon (or a spin wave)—with a given k-vector is proportional to

a+(k) ∼
∑

n

exp(ik · Tn) s−n . (28)

2.4 Properties of single-magnon states

2.4.1 Ground state

• let us consider a state with all spins pointing up:

|0〉 =
∏

n

⊗ |↑〉n ; (29)

its elementary properties are:

sz
n|0〉 =

1

2
|0〉 , s+

n |0〉 = 0 , (30)

and it can be shown that this state is an eigenstate of two operators, namely

the z-component of the total spin

Sz =
∑

n

sz
n (31)

and of the Hamiltonian H0 without an external field [see Eq. (14)]

H0 = − 1

2

∑

mn

Jmn sm · sn = − 1

2

∑

mn

Jmn (s−ms+
n + sz

msz
n) . (32)

In particular,

Sz|0〉 =
N

2
|0〉 , H0|0〉 = − NJ

8
|0〉 , (33)

where N is the number of sites (in a big finite crystal with periodic boundary

conditions).

• for a ferromagnet, the state |0〉 is the ground state of the Hamiltonian H0

but the corresponding eigenvalue (−NJ /8) is infinitely degenerated; |0〉 is

the non-degenerated ground state of the Hamiltonian H, Eq. (14), with a

positive external field (bn = b > 0)
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2.4.2 Local spin flips

• states (normalized to unity) with a single spin pointing down are given by

|λn〉 = s−n |0〉 ; (34)

they are eigenstates of the total spin operator,

Sz|λn〉 =
(

N

2
− 1

)

|λn〉 , (35)

but they are not eigenvectors of the Hamiltonian H0

• the average value of H0 in the state |λn〉 is given by

〈λn|H0|λn〉 = − NJ
8

+
J
2

,

which means that the energy cost of a single-spin reversal is equal to J /2

2.4.3 Single-magnon states

• let us define the creation operator of a magnon (k ∈ BZ)

a+(k) =
1√
N

∑

n

exp(ik · Tn) s−n , (36)

which differs from Eq. (28) only by the prefactor N−1/2 (introduced for rea-

sons of normalization); its action on the ground state, Eq. (29), yields a

single-magnon state (normalized to unity)

|µ(k)〉 = a+(k)|0〉 =
1√
N

∑

n

exp(ik · Tn) s−n |0〉

=
1√
N

∑

n

exp(ik · Tn) |λn〉 , (37)

so that the single-magnon state is a collective excitation, i.e., a linear com-

bination of the local spin excitations |λn〉

• one can prove relations:

[

Sz, a+(k)
]

= −a+(k) , Sz|µ(k)〉 =
(

N

2
− 1

)

|µ(k)〉 , (38)

which show that the single-magnon state is an eigenstate of the total spin

operator, Eq. (31), and that the excitation of one magnon reduces the total

spin by unity, similarly to the local spin reversal [see Eq. (35)]
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• one can also prove relations:
[

H0, s
−

j

]

=
∑

m

Jjm(s−j sz
m − s−msz

j) ,

[

H0, s
−

j

]

|0〉 =
J
2

s−j |0〉 − 1

2

∑

m

Jjms−m|0〉 ,

[

H0, a
+(k)

]

|0〉 =
1

2

[

J − J̃(k)
]

a+(k)|0〉 ,

which yield

H0|µ(k)〉 =
[

− NJ
8

+ E0(k)
]

|µ(k)〉 , (39)

with an abbreviation

E0(k) =
1

2

[

J − J̃(k)
]

. (40)

This means that the single-magnon state is an eigenstate of the Hamiltonian,

Eq. (32), and that the excitation of one magnon is connected with increase of

energy by E0(k), Eq. (40), which is just the magnon energy E(k), Eq. (26),

in zero applied field (b = 0) and at zero temperature (sz = 1/2), see Fig. 1.

 0

 4

 8

E
0(

k)
 / 

J 1

R M Γ X R Γ

Figure 1: The magnon dispersion law, Eq. (40), for a ferromagnet on a simple

cubic lattice with exchange interactions Jmn non-zero only between the first

(J1 > 0) and the second (J2 = J1/8) nearest neighbors. The magnon energy

E0(k) is plotted along edges of the irreducible Brillouin zone of the simple

cubic lattice.

• for long wavelengths, the magnon dispersion law E0(k) can be approxi-

mated by (see Fig. 1)

E0(k) ≈ Dk2 for |k| ≡ k → 0 , (41)
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where D is the spin-wave stiffness constant. Excitation of such magnons is

thus connected with a much smaller energy cost than that of a local spin

reversal (J /2), see section 2.4.2.

2.4.4 Two-magnon states

• the two-magnon states (unnormalized) can be defined similarly to the

single-magnon states, Eq. (37):

|µ(2)(k1,k2)〉 = a+(k1)a
+(k2)|0〉

=
1

N

∑

mn

exp(ik1 · Tm) exp(ik2 · Tn) s−ms−n |0〉 (42)

• one can prove relations analogous to Eq. (38):
[

Sz, a+(k1)a
+(k2)

]

= −2a+(k1)a
+(k2) ,

Sz|µ(2)(k1,k2)〉 =
(

N

2
− 2

)

|µ(2)(k1,k2)〉 , (43)

which show that the two-magnon state is an eigenstate of the total spin op-

erator, Eq. (31), with the eigenvalue corresponding to a total spin reduction

by two, i.e., the effects of the two magnons involved are strictly additive

• the two-magnon state is not an eigenstate of the Hamiltonian H0; it can

be proved that
[

H0, s
−

j s−r
]

= s−j
∑

n

Jrn(s−r sz
n − s−n sz

r) + s−r
∑

n

Jjn(s−j sz
n − s−n sz

j)

+ δjrs
−

j

∑

n

Jjns−n − Jjrs
−

j s−r ,

[

H0, s
−

j s−r
]

|0〉 =
s−j
2

(

J s−r −
∑

n

Jrns−n

)

|0〉 +
s−r
2

(

J s−j −
∑

n

Jjns
−

n

)

|0〉

+ δjrs
−

j

(
∑

n

Jjns
−

n

)

|0〉 − Jjrs
−

j s−r |0〉 .

This relation has to be multiplied by N−1 exp(ik1 ·Tj) exp(ik2 ·Tr) followed

by summation over j and r, see Eq. (42), in order to get an expression for

[H0, a
+(k1)a

+(k2)]|0〉. The latter yields then a result:

H0|µ(2)(k1,k2)〉 =
[

− NJ
8

+ E0(k1) + E0(k2)
]

|µ(2)(k1,k2)〉

+
1

N

∑

k∈BZ

J̃(k)
{

|µ(2)(k1 + k2 − k,k)〉 − |µ(2)(k1 − k,k2 + k)〉
}

, (44)

where the first term corresponds to non-interacting excitations while the

second term reflects the magnon-magnon interaction.
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2.5 Selfconsistency condition

• the obtained relation for the correlation function, Eq. (27), does not rep-

resent the final solution to the problem since the weights w(k) as well as

the average value of the spin sz and the magnon energies E(k) have not

been specified yet. In order to remove this ambiguity, one has to employ the

algebra of the local spin operators, Eqs. (15, 16, 17).

• inverse lattice Fourier transformation to Eq. (23) yields

Mn0(ω) =
1

N

∑

k∈BZ

exp(−ik ·Tn)M̃(k, ω) , (45)

where the number N of k-points in the sum is equal to the number of sites

in a big (but finite) crystal with periodic boundary conditions. Note that for

N → ∞, the sum in Eq. (45) is replaced by an integral over the BZ:

lim
N→∞

1

N

∑

k∈BZ

F (k) =
1

VBZ

∫

BZ
F (k) d3k ,

where F (k) is an arbitrary function and VBZ denotes the volume of the BZ.

• inverse Fourier transformation with respect to time variable leads to [see

Eq. (7)]:

〈s−n (t)s+
0 〉 =

1

2π

∫
∞

−∞

exp(−iωt)Mn0(ω)dω ,

〈s+
0 s−n (t)〉 =

1

2π

∫
∞

−∞

exp(−iωt)Mn0(ω) exp(−βω)dω

• for the special case of t = 0, this reduces to

〈s−n s+
0 〉 =

1

2π

∫
∞

−∞

Mn0(ω)dω ,

〈s+
0 s−n 〉 =

1

2π

∫
∞

−∞

Mn0(ω) exp(−βω)dω ,

and the use of Eq. (27) and Eq. (45) yields

〈s−n s+
0 〉 =

1

N

∑

k∈BZ

exp(−ik · Tn) w(k) ,

〈s+
0 s−n 〉 =

1

N

∑

k∈BZ

exp(−ik · Tn) w(k) exp[βE(k)] (46)

• let us employ a commutation relation that follows from Eq. (17),

[s+
m, s−n ] = 2δmn sz

m , (47)
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which yields after thermodynamic averaging

〈[s+
0 , s−n ]〉 = 〈s+

0 s−n 〉 − 〈s−n s+
0 〉 = 2 sz δn0 ,

and after substituting Eq. (46)

1

N

∑

k∈BZ

exp(−ik · Tn) w(k) {exp[βE(k)] − 1}
︸ ︷︷ ︸

g(k)

= 2 sz δn0 .

This relation is valid for all lattice sites n (for all translation vectors Tn)

which implies that the function g(k) reduces to a k-independent constant,

g(k) = 2 sz, and

w(k) =
2 sz

exp[βE(k)] − 1
. (48)

Note that the magnon weights w(k) are proportional to the average spin sz

and to the Bose-Einstein occupation function for the magnon energies E(k).

The only unknown quantity in the weights w(k), Eq. (48), and in the energies

E(k), Eq. (26), remains thus the average spin sz; for a given temperature T

and external field b, the magnon weights and energies become renormalized

according to the actual value of sz = sz (T, b).

• one can further employ algebraic relations for spin operators on a single

site, see Eq. (15):

s+
n s−n =




1 0

0 0





n

, s−n s+
n =




0 0

0 1





n

,

which yield

s+
n s−n + s−n s+

n = 1 , sz
n =

1

2
− s−n s+

n . (49)

The first of Eq. (49) gives after thermodynamic averaging

〈s+
0 s−0 〉 + 〈s−0 s+

0 〉 = 1 ,

and after substituting Eq. (46) and Eq. (48)

1

N

∑

k∈BZ

w(k) {exp[βE(k)] + 1} = 1 ,

2 sz
1

N

∑

k∈BZ

exp[βE(k)] + 1

exp[βE(k)] − 1
= 2 sz

1

N

∑

k∈BZ

coth

[

βE(k)

2

]

= 1 .

• the latter equation together with Eq. (26) lead to a selfconsistency condition

for sz:

1

2 sz
=

1

N

∑

k∈BZ

coth







β
{

b +
[

J − J̃(k)
]

sz
}

2






, (50)
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Figure 2: The temperature dependence of the spontaneous magnetization sz

as obtained from Eq. (50) for b = 0 and for the model defined in Fig. 1 (full

lines). The dashed lines denote the dependence in the mean-field approxi-

mation; the right panel shows the low-temperature region and it illustrates

the Bloch law, Eq. (55).

that closes the whole procedure and defines implicitly the dependence sz =

sz (T, b), see Fig. 2 for an example

2.6 Comparison to the MFA

• in the mean-field approximation (MFA) for the classical Ising model, the

selfconsistency condition is:

s̄ = tanh[β(b + J s̄)] ,
1

s̄
= coth[β(b + J s̄)] ,

while in the MFA for the quantum Heisenberg model, Eq. (14), it is given

by:

2 sz = tanh

[

β(b + J sz )

2

]

,
1

2 sz
= coth

[

β(b + J sz )

2

]

.

These conditions are similar to Eq. (50), especially when a sum rule for the

quantities J̃(k),
1

N

∑

k∈BZ

J̃(k) = J00 = 0 , (51)

is taken into account.
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2.7 Curie temperature

• in the limit of small fields b and high temperatures T , coth(x) ≈ x−1 for

|x| � 1, and Eq. (50) reduces to

1

2 sz
=

1

N

∑

k∈BZ

2

β
{

b +
[

J − J̃(k)
]

sz
} .

The Curie temperature is featured by existence of a small non-zero value of

sz in absence of external field (b = 0):

1

2 sz
=

1

N

∑

k∈BZ

2

β
[

J − J̃(k)
]

sz
,

which yields the following expression for the Curie temperature T RM
C :

1

kBT RM
C

= 4
1

N

∑

k∈BZ

1

J − J̃(k)
. (52)

Note that for a ferromagnet, an inequality J ≥ J̃(k) holds for all vectors

k ∈ BZ [i.e., all magnon energies E0(k) are non-negative]

• the Curie temperature in the MFA, T MFA
C is given explicitly by

kBT MFA
C =

1

4
J =

1

4

1

N

∑

k∈BZ

[

J − J̃(k)
]

, (53)

where the second relation is valid due to Eq. (51). A comparison of the

two Curie temperatures can be done using the well-known theorem on the

arithmetic and harmonic averages of positive numbers; it results in

T MFA
C

T RM
C

=







1

N

∑

k∈BZ

[

J − J̃(k)
]













1

N

∑

k∈BZ

1

J − J̃(k)






> 1 ,

so that the renormalized magnons lead to a reduced Curie temperature as

compared to the MFA (see Fig. 2).

2.8 Low-temperature behavior

• in the limit of low temperatures (T → 0) and for an infinitesimal positive

external field (b → 0+), the average magnetization tends to its saturated

value sz → 1/2. The deviation of sz from this limiting value due to a small

finite temperature T > 0 can be obtained from thermodynamic average of

the second of Eq. (49):

sz =
1

2
− 〈s−0 s+

0 〉 =
1

2
− 1

N

∑

k∈BZ

w(k) ,
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where use has been made of Eq. (46). Substitution of Eq. (48) yields

sz =
1

2
− 1

N

∑

k∈BZ

2 sz

exp[βE(k)] − 1

≈ 1

2
− 1

N

∑

k∈BZ

1

exp[βE0(k)] − 1
, (54)

where we replaced the value of sz at T > 0 by its zero-temperature limit

in the latter expression and employed the magnon dispersion law at zero

temperature, Eq. (40). The form of Eq. (54) shows that the initial reduction

of the average magnetization is due to thermal excitation of magnons.

• the dominating contribution to the second term of Eq. (54) is due to low-

energy magnons with long wavelength, see Eq. (41). For 3-dimensional sys-

tems, the second term in r.h.s. of Eq. (54) can be thus approximated by

1

N

∑

k∈BZ

1

exp[βE0(k)] − 1
≈ 1

VBZ

∫

BZ

1

exp(βDk2) − 1
d3k

≈ 4π

VBZ

∫
∞

0

k2

exp(βDk2) − 1
dk =

2π

VBZ

(βD)−3/2
∫

∞

0

y1/2

exp(y) − 1
dy

so that finally

sz (T ) ≈ 1

2
− α T 3/2 , (55)

where α is a constant. Equation (55) is the Bloch’s 3/2-law, see Fig. 2.

2.9 Renormalized magnons - a summary

• the theory of renormalized magnons for quantum isotropic Heisenberg fer-

romagnets is better than the MFA in following aspects:

+ it yields zero Curie temperature for 1- and 2-dimensional systems, in

agreement with the Mermin-Wagner theorem

+ it reproduces the Bloch law for the low-temperature behavior of average

magnetization in 3-dimensional systems

• the theory of renormalized magnons, however, fails in following points:

– the critical behavior is featured by critical exponents identical to those

obtained within the MFA
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– the magnetic short-range order above the Curie temperature is fully

neglected, similarly to the MFA

– the finite lifetime of magnons (due to the magnon-magnon interaction)

is neglected
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